Revert to simplistic eta estimation but make it easier to plug different algorithms

This commit is contained in:
Georgios Verigakis
2017-04-01 11:44:02 +03:00
parent c5043685c5
commit d440d5bbaf
2 changed files with 12 additions and 22 deletions

View File

@@ -27,14 +27,13 @@ __version__ = '1.2'
class Infinite(object):
file = stderr
sma_window = 10 # Simple Moving Average window
time_threshold = 0.1 # Minimum distance between data points (in seconds)
def __init__(self, *args, **kwargs):
self.index = 0
self.start_ts = time()
self.avg = 0
self._ts = self.start_ts
self._xput = deque(maxlen=self.sma_window)
self._pending = 0
for key, val in kwargs.items():
setattr(self, key, val)
@@ -43,11 +42,6 @@ class Infinite(object):
return None
return getattr(self, key, None)
@property
def avg(self):
"""Average throughput"""
return sum(self._xput) / len(self._xput) if self._xput else 0
@property
def elapsed(self):
return int(time() - self.start_ts)
@@ -56,6 +50,11 @@ class Infinite(object):
def elapsed_td(self):
return timedelta(seconds=self.elapsed)
def update_avg(self, n, dt):
if n > 0:
self._xput.append(dt / n)
self.avg = sum(self._xput) / len(self._xput)
def update(self):
pass
@@ -66,20 +65,12 @@ class Infinite(object):
pass
def next(self, n=1):
if n <= 0:
return
now = time()
dt = now - self._ts
if dt < self.time_threshold:
self._pending += n
else:
# avoid performing computationally intensive update task
# more than 1/dt (10 by default) times a second
self._xput.append((self._pending + n) / dt)
self.update_avg(n, dt)
self._ts = now
self._pending = 0
self.update()
self.index = self.index + n
self.update()
def iter(self, it):
try:
@@ -97,8 +88,7 @@ class Progress(Infinite):
@property
def eta(self):
avg = self.avg
return int(ceil(self.remaining / avg)) if avg else 0
return int(ceil(self.avg * self.remaining))
@property
def eta_td(self):

View File

@@ -18,13 +18,13 @@ def sleep():
for bar_cls in (Bar, ChargingBar, FillingSquaresBar, FillingCirclesBar):
suffix = '%(index)d/%(max)d [%(elapsed)d / %(eta)d]'
suffix = '%(index)d/%(max)d [%(elapsed)d / %(eta)d / %(eta_td)s]'
bar = bar_cls(bar_cls.__name__, suffix=suffix)
for i in bar.iter(range(200)):
sleep()
for bar_cls in (IncrementalBar, ShadyBar):
suffix = '%(percent)d%% [%(elapsed_td)s / %(eta_td)s]'
suffix = '%(percent)d%% [%(elapsed_td)s / %(eta)d / %(eta_td)s]'
bar = bar_cls(bar_cls.__name__, suffix=suffix)
for i in bar.iter(range(200)):
sleep()